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1. INTRODUCTION AND PRELIMNARIES

Let X be a linear closed subspace of the real Banach space Y. An element
z in X is called a best approximation to an element y in Y if

Ily - zll :'( Ily - xii

for all x in X. Following Papini and Singer [14], we call an element z in X
a best coapproximation to an element y in Y if

for all x in X. This kind of "approximation" has been introduced by
Franchetti and Furi [8].

DEFINITION 1.1. An element z in X is called a strongly unique best
approximation to an element y in Y if there exist a positive number K and
a strictly increasing continuous function cp: [0, + (0) = IR + ~ IR + ;

cp(O) = 0, such that

cp(lly - zll):'( cp(11 y - xii) - Kcp(llz - xii) (1.1 )

for all x in X.

From the definition it immediately follows that a strongly unique best
approximation z in X to an element y in Y is a unique best approximation
in X to y. Moreover, if K = K(y);,: 1 then z is also a unique best coap­
proximation in X to y. When X is a Haar subspace of C(B), the space of
continuous real valued functions on a compact Hausdorff space B with the
supremum norm, Newman and Shapiro [11] have shown that to every y
in qB) there exists a strongly unique best approximation in X with
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cp(s) = sand 0 < K ~ 1. More recently, a number of papers [3 - 5, 12, 13,
15] have examined the largest constant Kin (1.1) as a functional of y and
characterized a strongly unique best approximation to y in C(B). On the
other hand, it is well known [18] that a strongly unique best
approximation with cp(s) = s need not exist for every y in Y when Y is a
smooth space (in particular an L p space). Therefore, it would be important
to know in this case whether there exists a strongly unique best
approximation to every yin Y in the sense of Definition 1.1. If so, it would
be desirable to give formulae for the constant K and the function cp in (1.1 )
In this paper we propose a unified approach to deal with these problems
for a linear closed subspace X of a real Banach space Y. The approach con­
sists of using the following theorem due to Lezanski [9].

THEOREM 1.1. Let f X ---+ IR be a functional satisfying the following t\l'O

conditions:

(i) There exists a nondecreasing continuous function d: IR + -+ IR + such
rhat II xiii ~r (XiEX, i= 1, 2) implies that

If(xd-f(x 1 )! ~d(r) Ilx, -Xlii;

(ii) For any t E (0,1) and x, hEX we have

g(r; x, h):= (f(x +h) + (1- t)f(x) -f(x+ th)

?-c(r,llhll),
where

c(r, s) = rb((1- r) s) + (1- t) bits), o~ r ~ 1 and s?- 0,

b(s) = (a(t) dt, s?- 0,

and a: IR + -+ IR + is a continuous strictly increasing function such thar

a(O)=O and lim (/(s) = + oc.
s -- + ,x

Then there exists a unique elemenr Z E X such rhat

f(z) ~f(x) and

for every x in X.

The main results presented in this paper are strong unicity theorems for
L p (P?- 2) spaces and for abstract spline approximation. In particular, this
solves the following problem posed by Dunham [7, Problem 41]: What is
the counterpart of strong uniqueness for L p approximation?



186 RYSZARD SMARZEWSKI

It IS mteresting to note that Angelos and Egger [1] have introduced
recently some other notion of strong uniqueness in L p spaces. This strong
uniqueness is strictly a local property, unlike the Newman and Shapiro
concept of strong uniqueness in qB) and its generalization given in
Definition 1.1.

2. STRONG UNICITY FOR HILBERT SPACES

In this section we assume that X is a linear closed subspace of the real
Hilbert space Y. Then the following theorem holds.

THEOREM 2.1. For an element yin Y there exists a unique element z in X
such that

(2.1 )

for all x in X.

Proof Let us set

a(s) = 2s,

and

d(r)=2(r+ IIJII)

into Theorem 1.1. Then

b(s) = 52

Moreover, we have

and c(t, 5) = t(1- t) S2.

for all XiEX (1lxill <r, i= 1,2), and

g(t;x,h)=t(1-t) IlhI1 2 =c(t, Ilhll)

for any t E (0, 1) and x, hEX. Therefore, the assumptions (i) and (ii) in
Theorem 1.1 are satisfied in this case. Hence by using this theorem we con­
clude that there exists a unique element z in X such that

f(z) <f(x) and Ilx-zll :«(f(x)_f(Z)(2, xEX.

This completes the proof. I
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The theorem shows that there exists a strongly unique best
approximation z in X to every y E Y in the sense of Definition 1.1, <p(s) = S2

and K = 1. Hence a strongly unique best approximation :: in X to an
element y in Y is both a unique best approximation and a coapproximation
in X to y. Thus, we can define a linear projection P of Yonto X by setting
Py = z. If x = 0 is inserted into (2.1) then one can derive the corollary.

COROLLARY 2.1. For every y in Y we ha1'e

IIPyI12~ IIYI12-lly-PYI1 2. (2.2)

As an immediate consequence of (2.2) we obtain the following well­
known result.

COROLLARY 2.2. The projection P is a linear norm 1 projection of Yonto

X and IlP.vll = Lvii iff y C¥.

3. STRONG UNICITY FOR SPLINES IN HILBERT SPACES

Throughout this section it is assumed that T is a bounded linear
operator on a real Banach space Y to a real Hilbert space Y1 . Moreover,
let X be a linear closed subspace of Y such that the linear subspace
Xl = T(X) is closed in Yj and

X n ker T = {O}.

Clearly, these assumptions ensure that the operator To = T Ix has a boun­
ded linear inverse To I: Xl ---c> X. An element 0' = Y - Z (z E X) is called a
spline approximation to an element y in Y if

II TO'II ~ II Ty - Txll

for all x in X.

Remark 3.1. If G is a subset of the conjugate space y* of Y and

X= nker g
gEG

then the above definition of a spline approximation (J' to an element y of Y
reduces to the usual definition of a (T, G)-spline interpolant 0' to y
introduced by Atteia [2] (cf. also de Boor [6]).

640;47:3-2
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THEOREM 3.1. For an element y in Y there exists a unique element
(J = y - z (z E X) such that

IIT(JII Z
:::; IITy- Txll z-II Tijlll-z liz _xll z

for all x in X.

Proof If we insert

(3.1)

f(x) = IITy- Txll z,

and

d(r) = 2 II TnI' + IIYII)

into Theorem 1.1 then

and

Moreover, we have

If(xd-f(xz)1 = 1(2Ty- Tx z - Tx l , Tx: z - Txl)1

:::;d(r) Ilxl-xzll

for all XiEX (1lxill :::;r, i= 1, 2) and

g(t;x,h)=t(l-t) II Thf;::c(t, Ilhll)

for any t E (0, 1) and x, hEX. Hence we can apply Theorem 1.1 to complete
the proof. I

The theorem shows that there exists a strongly unique best
approximation Tz in Xl to every Ty (y E Y) in the sense of Definition 1.1,
cp(s)=sz and K= IITij l ll-2. In other words, we can say that the element
(J = y - z is a strongly unique spline approximation in X to y. Clearly, it is
a unique spline approximation in X to y. Now, let a linear spline projection
P be defined by Py = (J, Y E Y. Then setting x = °into (3.1) we immediately
obtain

COROLLARY 3.1. For every y in Y we have

(3.2)

Let us note that the inequality (3.2) yields the well-known [6] estimates
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of the norms of the projections 1- P and P, where I is the identity operator
on Y.

4. STRONG UNICITY FOR Lp-SPACES

Let (S, I, fl) be a positive measure space. In the present section we shall
use Theorem 1.1 to deduce the existence of strongiy unique best
approximations in the space Y = L p = L

1'
( S, :E, f.i.) of all fl-measurable real

valued functions (equivalence classes) yon S such that

l' Jl l'
11)'11 = 11)'111' = .Is IY(sW p(ds) <x,

We first establish two auxiliary lemmas.

LEMMA 4.1. ffO ~ Ui~ m U= 1,2, m > 0) then

2~p< x.

Proof Apply the mean value theorem to the function f( u) = uP I

LEMMA 4.2. If I E [0, 1]. U, V E IH, and 2 ~ p < ,x then

(4.1)

where

Proof If v = °or p = 2, then the proof is trivial. Otherwise, let us
denote U= -S'L', SEIH. Then the inequality (4.1) is equivalent to the
inequality

where

f(t, s) ~ 0; t E [0, 1], S E IR, i4.2j

This inequality is trivial for 1=0, 1, s. Moreover, note that f(r, 5) =f(1 - t,
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l-s). Hence it is sufficient to prove the inequality (4.2) only for s in the
intervals

A I= {sEIR:s>tandO<t< 1}.

For this purpose we define the functions F, on AI by

F,(s) = -t sign(1- s)[ll- sl/(s- t)]p-l

+ (l-t)(s/(s-t)y-l-l.

Since

it follows that Fls) strictly decreases (increases) for s> max(t, ~) (t < s ~ !,
respectively). Hence

a

Cf
= p(s - W- 1 F,(s) > lim FI(s) = 0

S s ~ +x

for all s>~ in A,. If t?~, then af/as>o implies f(t, s) is increasing, so
f(t, s) ? f( t, t) ? O. Further, by the fact that

we conclude that there exists a unique s, E (t, !) such that

Therefore, we obtain

f (t, s) ? f (t, s,) = t( 1- t) {[s;' - 1 + (1 - S t ) P- 1]

- 22 -
p[t P- 1 +(1-t)p-l]}

> t(1-t){2 2
- P -2 2

- P '1}=0

for all s in A" t E (0, 1). This completes the proof. I
Let us note that Lemma 4.2 is not true for 1~p < 2. Indeed, by the

L'H6pital rule, we have

lim [f(t,s)+w(t)]=t lim Sp-2[(1_s-1)P-2
5_+00 S~+OCi

where f(t, s) and w(t) are as in (4.2) and (4.1), respectively.
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THEOREM 4.1. Lel X be a linear closed subspace of L p , p?: 2. Then for a
function Y in L p there exiSlS a unique function z in X such lhal

(4.4)

for all x in X.

Proof Let us define

and

d(r)=p(r+ IlyIW-- 1
•

Then, by using notations from Theorem 1.1, we have

and

where wet) is as in Lemma 4.2. Now, if X;EX (1Ix;11 ~r, i= 1, 2) then \\le
have u;:= Ily-x;11 ~r+ Ilyli. Hence by Lemma 4.1 we obtain

If(xtl-f(x2 )1 = luf-ufl ~d(r) Illx[ -YII-lly-x 2 111

~d(r) Ilx l -x 2 11.

Thus the condition (i) in Theorem 1.1 is satisfied. In order to verify the
condition (iiI in Theorem 1.1, we put u=y(s)-x(s) and v= -his) into the
inequality (4.1) and integrate both sides. This gives the inequality

g(t; x, h) = l Ily-x - hll p + (1- t) IIY -;xV

- Ily-x-thIIP?:c(r, Ilhll),

where l and x, h are arbitrary elements of the interval (0, 1) and the sub­
space X, respectively. This completes the proof of the condition (ii).
Finally, by applying Theorem 1.1, we immediately obtain (4.4). I

This theorem says that there exists a strongly unique best approximation
z in Xto every yin Lp (p?:2) in the sense of Definition 1.1, cp(s)=sP and
K = 22

- p. Clearly, the function z is the unique best approximation in X to
the function y. When p = 2, then these results coincide with the
corresponding results obtained in Section 2. Now, let the projection P = Pp

of L p (p ?: 2) onto X be defined by Py = z. In general, this is a linear projec­
tion only for p = 2. If we put x = 0 into (4.4) then we directly obtain the
corollary.



192 RYSZARD SMARZEWSKI

COROLLARY 4.1. For every yin Lp (p;?:2) we have

IIPyl1 1':(; 21' - 2( II yll I' - II y - Pyll 1'),

IIPyl1 :(;2'-2/1' Lvii and fly-Pyll:(; Ilyli.

When p = 2, then the second inequality in this corollary implies that the
linear projection P satisfies a Lipschitz condition of order 1 with the con­
stant 1. In the case p> 2, we show that P satisfies a local Lipschitz con­
dition of the order lip.

COROLLARY 4.2. For every Y"Y2 in a ball B(r)= {YELp: Ilyll :(;r} of
Lp (p;?: 2) we haL'e

where k,. < 6 .j2 r' - '/1'.

Proof Let us put Y = YI, X = PYI and Y = 1'2, x = pYI into the
inequality (4.4), and sum up the obtained inequalities. Then, by applying
Lemma 4.1, we derive

22
-1' IIPYI-p,hII P :(;!(lly,-PY21I P -IIY2-P1'2II P

+!( II Y2 - Py ,II I' - II Y I - Py ,II 1')

:(;p[r(1 +2'- 2/p )JP-' II y, - Y211

for any y" Y2 in B(r). Hence the desired inequality follows immediately. I

5. STRONG UNICITY FOR SPLINES IN Lp-SPACES

In the present section we briefly discuss some properties of spline
approximation with respect to a linear bounded operator T on a real
Banach space Y into the space YI=Lp=Lp(S,r,/l) (p>2), which is
defined as in Section 3. Here it is assumed that X, X" To, and (j = y - z
have the same meaning as in Section 3. Thus the only difference between
spline approximations considered in Section 3 and spline approximations
of this section consists in replacing the Hilbert space Y, by an L,,-space,
p>2.

THEOREM 5.1. For an element yin Y there exists a strongly unique spline
approximation (J = y - Z (z E X), i.e.,

p>2,

for all x in X.
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Proof Let us replace a(s), b(s), c(t,s), d(r), andf(x)= l!y-.\"IfP in the
proof of Theorem 4.1 by ka(s), kb(s), kc( t, s) (k = I! To lll- P ), 11 Til d(r), and
f(x) = II Ty - Txll P, respectively.

Since II Th II ;:;;, 11 To 111 -1 II h II for any hEX (see Section 3), we can now
repeat mutatis mutandis the proof of Theorem 4.1 to complete the proof of
this theorem. I

From this theorem we immediately conclude that the spline projection
Py = (1, Y E Y, has the following properties.

COROLLARY 5.1. For every y in Y we have

II y - Py II P ~ 2P - 2 II To til P( II T)· II P - II TPy Ii PI,

Ily-Pyll ~Al and IIPyl1 ~ 11.1'11 +M,

where

6. STRONG UNICITY AND INVARIANT ApPROXIMATION

Let F be a nonexpansive map of a Banach space Y into itself, i.e.,

for any Yi U= 1, 2) in Y. Following Meinardus [10J, we can introduce a
notion of invariant approximation as follows.

DEFINITION 6.1. A best approximation:: in X to an element J' in Y such
that Fy = y is called an invariant approximation in X to y if Fz =::.

In some cases, by using an appropriately chosen fixed point theorem,
one can prove the invariance of a best approximation [10, 16, 17]. On the
other hand, one can easily notice that there is a direct link between the
notions of invariant approximation and strongly unique best
approximation in the sense of Definition 1.1. More precisely, we have

THEOREM 6.1. Let:: be a strongly unique best approximation in X to
y E Y stich that Fy = y. Then z is an invariant approximation in X to y.

Proof By Definition 1.1 we have

K<p( liz - F::II) ~ <p( IWr - Fzll) - <p( II y - zll)

~ <p( II y - zll) - <p( II y - zll) = o.
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Since cp(O)=O, cp(s»O for s>O and K>O, it follows that Ilz-Fzll =0.
This completes the proof. I

In particular, this theorem implies that a best approximation z in X to
y E Y considered in Sections 2 and 4 is invariant. When the map F is linear
and TF= FT, a reasoning similar to that in Theorem 6.1 shows that the
spline approximations of Sections 3 and 5 are also invariant.

Note added in proof We have shown, jointly with B. Prus, that the best Lp ­

approximations, I < P < 2, are strongly unique in the sense of Definition 1.1 with respect to
the function <pis) = S2.
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